它包含以形助数和以数解形两个方面
2019-12-04 09:18
来源:未知
点击数:           

教材中有些内容是枯燥乏味,艰涩难懂的.如数列的极限概念及无穷等比数列各项和的概念比较抽象,是难点.如对于 =1这一等式,有些同学学完了数列的极限这一节后仍表怀疑.

数形结合是中学数学中重要的思想方法,每年高考中都有一定量的考题采用此法解决,可起到事半功倍的效果。数形结合的思想主要用于思路分析、化简运算及推理的过程,以求快速准确地分析问题、解决问题。

当然,教师提出的问题必须转化为学生自己思维的矛盾.只有把客观矛盾转化为学生自身的思维矛盾,才能产生激疑效应.

高中数学四大数学思想:函数与方程、分类讨论、数形结合、转化与化归。数学中两大研究对象数与 形的矛盾统一是数学发展的内在因素,数形结合是贯穿于数学发展历史长河中的一条主线,并且使数学在实践中的应用更加广泛和深入。华罗庚说:数少形时不直观,形少数时难入微道出了数形结合的辩证关系,它包含以形助数和以数解形两个方面。利用它可使复杂问题简单化、抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。

教学从矛盾开始就是从问题开始.思维自疑问和惊奇开始,在教学中可设计一个学生不易回答的悬念或者一个有趣的故事,激发学生强烈的求知欲望,起到启示诱导的作用.如在教授等差数列求和公式时,有位教师先讲了一个数学小故事:德国的数学王子高斯,在小学读书时,老师出了一道算术题:1+2+3++100=?,老师刚读完题目,高斯就在他的小黑板上写出了答案:5050,其他同学还在一个数一个数的挨个相加呢.那么,高斯是用什么方法做得这么快呢?这时学生出现惊疑,产生一种强烈的探究反响.这就是今天要讲的等差数列的求和方法--倒序相加法.

一堂好课也应设矛盾而终,使其完而未完,意味无穷.在一堂课结束时,根据知识的系统,承上启下地提出新的问题,这样一方面可以使新旧知识有机地联系起来,同时可以激发起学生新的求知欲望,为下一节课的教学作好充分的心理准备.我国章回小说就常用这种妙趣夺人的心理设计,每当故事发展到高潮,事物的矛盾冲突激化到顶点的时候,当读者急切地盼望故事的结局时,作者便以欲知后事如何,且听下回分解结尾,迫使读者不得不继续读下去!课堂何尝不是如此,一堂好课不是讲完了就完了,而是词已尽意无穷.

为此,一位教师在教学中插入了一段关于分牛传说的析疑的故事:传说古代印度有一位老人,临终前留下遗嘱,要把19头牛分给三个儿子.老大分总数的1/2,老二分总数的1/4,老三分总数的1/5.按印度的教规,牛被视为神灵,不能宰杀,只能整头分,先人的遗嘱更必须无条件遵从.老人死后,三兄弟为分牛一事而绞尽脑汁,却计无所出,最后决定诉诸官府.官府一筹莫展,便以清官难断家务事为由,一推了之.

邻村智叟知道了,说:这好办!我有一头牛借给你们.这样,总共就有20头牛.老大分1/2可得10头;老二分1/4可得5头;老三分1/5可得4头.你等三人共分去19头牛,剩下的一头牛再还我!真是妙极了!不过,后来人们在钦佩之余总带有一丝怀疑.老大似乎只该分9.5头,最后他怎么竟得了10头呢?学生很感兴趣,老师经过分析使问题转化为学生所学的无穷等比

Copyright © 2003-2015 All rights reserved.http://www.uwzczod.cn银河存1元送38彩金网站,银河国际手机版最新,澳门银行备用网址版权所有